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1. Introduction 

We consider the linear hyperbolic system 

(1.la) 
t >o, 

t = 0 ,  

in a bounded domain R with smooth boundary r on which linear relations 
between u components 

are given as boundary conditions. Here u = (u"), * * - , u ( ~ ) ) ' , F  = (F"', . * * , F'"))', 
f = (f'l), * * .., f'"')' are n -dimensional vector functions which depend smoothly 
on x = (xl, * * - , x s ) ,  t and 

(1.lb) Dulr = 0, tzo, 

(1.lc) P x,t,- = & - I &  x , t , -  + P ,  x , r , - ,  ( a3 ( a3 ( a 9  
where the n -dimensional coefficient matrices of 

a a  

a a  
( l . ld )  

(l.le) 

are of order O(1) and smoothly depend on x ,  t. 
Let u = u ( x )  be a vector function and denote by 

O < & C  1, 

' If u, w are vector functions, the ( I u ( ( ~ = j n ( u ( " d x  denotes the usual L,-norm. In particular, 
I lu l l :~ l lu11~ = (u,  u ) ,  where (0, w )  = In w * u  dx denotes the usual L2-inner product. 
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the usual Sobolev norm. Then we are interested in showing that, under appropri- 
ate assumptions, the solution of (1.1) satisfies the 

ENERGY ESTIMATE. In any finite time interval 0 5  t 5 T, there exists a 
constant KO = Ko(T)  independent of E - l ,  u ( x ,  O) ,  F (x ,  t )  and their derivatives, 
such that the solution of (1.1) satisfies the estimate 

Thus estimate (E) guarantees that for the solution of system (1.1) to remain 
bounded independently of the fast time scale of order O(E-’ ) ,  one has to prepare 
the initial data in such a way that a”u(x, t ) /a t ’ I ,=o ,  v = 0.1, , are of order 
O( 1). (The variation of the initial space derivatives a’% ( x ,  [ ) / a x  rr If  =o is indepen- 
dent of the fast scale since we have assumed that the initial data f ( x )  are 
sufficiently smooth.) 

We postulate 

ASSUMPTION 1.1. The symbol F,,(iw) = i C,”=, w A i  +G has a fixed rank 
which is independent of w = ( w ~ ,  * * * , us), x ,  t. 

In the appendix we prove that for Assumption 1.1 to hold, the assumed fixed 
rank of the symbol F0(io) has to be an even integer, which throughout the paper 
is denoted by 

(l.lf) w A j + B  = 2 p ,  1wISc0, X E ~ ,  t Z O .  ‘I j = l  

ASSUMPTION 1.2. The operator P is half-bounded, i.e.,  there exists a constant 
a independent of e-’, such that, for all smooth functions w satisfying the boundary 
conditions (1.1 b), the estimafe 

(1.2) B e  ( w ,  P w )  5aIIw112 

holds. 

Remark. We can make the growth factor a in (1.2) as a negative as we 
need, by introducing into (1.1) a new decaying variable u*(x, t )  = e-%(x, t ) ,  
which satisfies system (1.1) with P + P ,  = P -p ,  while the growth factor a is 
replaced by a* = a - p. 

Using integration by parts, Assumption 1.2 implies that the homogeneous 
system associated with ( l . l ) ,  
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is uniformly well posed, i.e., the energy estimate 

(1.4) IIu ( x ,  t ) l l ~  ea('-'o)IIu (x ,  to)ll, t 2 t o h 0 ,  

holds. 
By Duhamel's principle, we can estimate IIu(x, t)ll in terms of the initial and 

inhomogeneous terms, Ilu ( x ,  t = O)(l, IlF(x, t)ll, thus proving estimate (E) for Y = 0. 
Now, differentiating system (1.1) with respect to either its time or  space arguments 
in the one-dimensional case, one obtains (the differentiated u is denoted by u )  

ari 
- = Pli + E -'Pol4 + I j 'U  +P, 
at 

Du + D u  = 0, 

x E n = [O, 13, 

x E r = {o,i). 
Then, assuming A ,  g, D are constant matrices independent of x, t, we can apply 
Duhamel's principle once more using the boundedness of Ilu(x, r)ll and see that 
estimate (E) holds also for v = 1. Repeating the process we obtain estimate (E) 
for the higher derivatives. (See [2], Section 3, for the multi-dimensional case 
where the boundary conditions are, in particular, periodic.) The above process 
breaks down however in the presence of variable coefficients, since direct applica- 
tion of Duhamel's principle yields estimates depending on E -*, which is reflected 
by the nonvanishing term E -'Pou. 

In this paper we generalize the theory developed by H. 0. Kreiss in [2] for 
estimating the solution of system (1.1) with variable coefficients in the special 
case p = 1, and prove the energy estimate (E) for the general case p 2 1. We 
assume that the reader is familiar with [2]. 

We start by considering the one-dimensional problem deriving, in Section 
2, a normal representation for the symbol e0( iw) ,  where we distinguish between 
three normal forms of that representation. In fact, the normal representation 
derived is the key for proving the one-dimensional energy estimate as carried 
out in Sections 3,4,  and 5 .  We also show in Section 2 that in the three different 
cases, the 2 p  fast characteristic velocities of the system split into p pairs of 
velocities traveling in opposite directions. 

In Sections 3 and 4 we prove estimate (E) for the first and second normal 
forms of F0(iw), respectively. These are the appropriate block generalizations 
of those studied in [2], Sections 5 and 6. The energy estimate for the third 
normal form, which actually consists of p - 1 different subcases (and evidently 
cannot exist in the special case p = I), is proved in Section 5 ,  where we employ 
combined techniques previously used in studying the first two normal forms. 

The study of the multi-dimensional problem can be Carrie: out similarily, 
by first deriving a normal form of the multi-dimensional symbol Po(iw), and then 
employing it to obtain an energy estimate. The detailed analysis of that case will 
be published in a forthcoming paper. 
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2. A Normal Form for Problems in One Space Dimension 

We consider the system 

(2.la) 
* = ( : P o + P l ) u + F ,  at t > 0 ,  

I = 0, 

in one space dimension 0 5 x 5 1, together with boundary conditions 

(2.lb) Dou(O,r )=D,u( l ,  r ) = O ,  t 20, 

which are linear relations between u -components, expressing the dependence 
of the incoming characteristic variables on the outgoing ones. Here 

(2.lc) P , u  =&L, + ( A u ) , ] + B u ,  PlU =:[Au, + ( A u ) , ] + ~ u ,  

where, by our Assumption 1.1 with w = 00, the symmetric matrix A has ezactly 
2p eigenvalues K # O.* Therefore, without restricting generality, A and A may 
be expressed in the form 

where A", A"" denote the upper left and lower right blocks of order 2p and 
n - 2p, respectively-a conventional notation which will be used throughout the 
paper. 

In order to prove that the energy estimate (E) holds, we need a special form 
of the symbol @&a). In our next theorem we discuss this in a somewhat 
generalized formulation which is going to be used later on. 

THEOREM 2.1 (Compare [2], Lemma 4.1). Consider the pencil w d + B ,  
where 

0 0  

is a real symmetric matrix, 93 is a Hermitian matrix whose elements are either in 
R or i R  (i.e., are either real or purely imaginary), and assume that, for all real w ,  
Iw 1 5 co, it has rank 2p. Then, there exists an w-independent orthogonal matrix 

*The example 

"(o 1 0  o)' 8=(-; ;) 
shows that indeed, it is necessary to consider the limit case w = co for A to have rank 2p.  
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such that 

(2.3a) w 

with 

(2.3b) rank (B13) = m, rank (wA22+B22) = 2(p -m),  

where A l l ,  B I I ,  B13 and A 2 2 ,  B22 are square blocks of order m and  2p-m, 
respectively. 

Proof: The eigenspace connected with K = 0 consists of vectors x = ( X I ,  x")' 
which are determined by the system 

For w = 00 the above system which, by the nonsingularity of A", becomes 

x =0,  B x =0,  

satisfies our assumption of having rank 2p only if B"" = 0. Then, the weakly 
coupled system (2.4) has the assumed rank 2p only if rank (B"') = m with 
O 5 m S p .  

I I I I I  I I  

We can construct orthogonal transformations UII, U"" such that 

where B13 is a nonsingular block of order m (for example, one may take ( B d 3  :) 
to be the singular value decomposition of B'"). Applying the orthogonal trans- 
formation U = (7' $ 1 1 ) ,  we obtain the desired form (2.3a), while system (2.4) 
which, for 

and 
X I  = ( x  r11 , x [21 )', X I K  = (xr31, X C 4 3 ' ,  

partitioned correspondingly, becomes 

(wA 11 + B 11)x [ ' I  + (wA 12 + B12)x r21 +B13xr3I - - 0, 

(wAT2 + B T 2 ) x [ " + ( w A 2 2 + B 2 2 ) ~ [ ~ ~  = 0,  
+B* [11 

13x = 0, 
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has the assumed rank 2p only if rank (B13)  +rank (wA22 + B Z 2 )  +rank (BT3) = 2p, 
i.e., rank ( U A ~ ~ +  B22) = 2(p  - m ) .  This completes the proof of the theorem. 

The construction of the othogonal transformation 

u = (7 u"II " )  
in (2.2) is such that 

(2.5) 

We postulate 

U"*B'"U"" = ( B 1 3  O) 
0 0 '  

rank (B'") =rank ( B I 3 ) .  

ASSUMPTION 2.1 ([2], Assumption 4.2). The matrix B'Ir has fixed rank 

Then, employing Theorem 2.1 for "A + ig, we can construct an orthogonal 

independent of  x, t .  

matrix 

smoothly depending on x ,  r which transforms oA + ig to the normal representa- 
tion (2.3). Introducing a new variable 

u - (y  
into system (2.1), we find that, corresponding to rank (B"') = m, 0 5 m S p ,  the 
operator Po has one of p + 1 possible normal representations which we split up 
into the following three normal forms: 

The first normal form (with m = 0). where 

with 2p-order blocks satisfying 

(2.6b) JiwA"+B"J#O, for allrealo,  J w J ~ c o ;  

(2.7a) 

the second normal form (with m = p ) ,  where 

au a 
ax ax 
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with all non-zero blocks being of order p and 

(2.7b) 

the third normal form (with 1 5 m S p  - 1, p > l), where 

IA 121 * IBnI + 0; 

POU =- 

0 0  

All ,  Bl l ,  B13 and A22, Bz2 being square blocks of order m and 2 p  - m, respec- 
tively, and 

rank (ioA22 + B22) = 2(p - m ) .  

Upon applying the orthogonal transformation U = diag [I,,,; U22; In-2p], where 
U22 diagonalizesA22, we find that the third normal representation of the operator 
Po takes the form 

1 
Pou =- 

2 

(2.8a) 

A12.2, B13, being m-th order nonsingular blocks and 

Remarks. (i) We note that the first and second normal forms may be 
considered as limit cases of the third one, with m = 0 and m = p, respectively. 

'Since rank ( i ~ A ~ ~ + E 2 2 ) = 2 ( p - m )  we have r a r 1 k ( A ~ ~ , ~ ) ~ 2 ( p - m )  and clearly 
rank (A12.2) dm. Equating rank (A") = rank (A12,2) +rank (Azz,l)+rank (ATz2.*) = 2p, we find that 
equality must take place in the first two weak inequalities. Hence A 12,2 is nonsingular and (2.8b) 
holds also for w =a. 
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(ii) By Assumption 1.1, the dimension of system (2,1), n,  is not less than 2p 
and therefore the first normal form (2.6) can always exist. In the second and 
third normal forms (the former is considered as the limit case m = p  of the 
latter), the variation of rank (B"') = rank (BI3) = rn, 1 S m S p ,  is further re- 
stricted by 

(2.9a) 1 S m  Smin  ( p ,  n -2p ) ,  n > 2 p .  

In particular, the second normal form can exist only if the dimension n satisfies 

(2.9b) n 2 3 p .  

For A" we have in all three normal cases 

(2.10) (-1)'IA" I > 0. 

Indeed, in the first normal form, (2.10) follows by expanding 

o z I ~ ~ A  +B" I = (- i ) P w 2 p l ~ r I l  + . . . + IB" 1, )o)sco, 
and noting that (B"I > O  as a determinant of a nonsingular antisymmetric matrix. 
In the second normal form, (2.10) follows by multiplying 

A"'(A* 12 A12) 0 

by the 2p-dimensional matrix J2' = antidiag (1; 1; * - * ; l ) ,  

I Jzp I IA" I= IJpA~2 I IJpA12 I= IA12 I2 ,  

and noting that IJ2pl = (-1)'. Finally, in the third normal form, (2.10) follows by 
multiplying J2pArr, 

P Z p I  IA"I = I J ~ A T Z , ~ I  I J ~ P - ~ A ~ ~ , ~ I I J A ~ ~ . ~ I =  ( - 1 ) P - m I ~ 2 2 . 1 1 1 ~ 1 2 . 2 1 2 ,  

where by induction (-1)P-mIA22.~1 > 0. 
From (2.10) it follows that in the particular case p = 1 (which is, for example, 

the case of Euler equations with the sound speed representing the fast scale) 
we have p = 1 pairs of characteristic velocities traveling in opposite directions. 
In our next lemma we show that this result holds also in the general case p 2 1. 

LEMMA 2.1. The 2p fast characteristic velocities of system (2.1) consist of p 
positive velocities and p negative ones. 

Proof: In the first normal form (2.6), we consider the characteristic poly- 
nomial 

(2.1 1) O(r,w)=lrI2,-(wArr +iB")I 
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whose r-roots are real, and whose number of signed roots is independent of w 
since, by (2.6b), Q ( r = O , w ) # O .  Taking w = O  we find that the 2p roots of 
Q(r ,  w = 0) are the eigenvalues of iB" (B" antisymmetric) which split into p 
pairs, each of which consists of two real eigenvalues with different signs. Letting 
w + 00, we see that the eigenvalues of A" are split similarly. 

In the second normal form (2.7), we note that, by (2.7b), A I 2  is nonsingular 
and hence A 12ATz is positive definite. It follows that there exists a nonsingular 
matrix U11, which diagonalizes (under congruence) both A IZATZ > 0 and A 1 1  

into Zp and some diagonal matrix, say A, respectively. Let 

then the number of signed eigenvalues K of A" is determined by 

i.e., K ~ + K ~ -  = -1. 
In the third normal form (2.8) we use induction on the rank 2p. For p = 1 

the result follows from (2.10). (In fact, in the special case p = 1, only the first 
two normal forms which have already been discussed above can exist.) By the 
induction assumption, (2.8b) implies that AZzm1 has p - m positive eigenvalues 
and p - m negative ones and hence is congruently similar to 

Let V denote the nonsingular (and in fact unitary) matrix 

then upon applying U" =diag[I,,,; VU22.1; Zm] we find that A" is congruently 
similar to (and therefore has the same number of signed eigenvalues as) the 
block upper antidiagonal matrix 

/ A l l  Al2,l A12.2\ 

(2.13) 

We recall that every (nonsingular block) upper antidiagonal symmetric matrix 
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of order 2p has p positive eigenvalues and p negative ones.4 This gives us the 
desired result in the third normal case as well. 

Remark. While carrying out the proof of Lemma 2.1 we have used the fact 
that F0(iw = 0) =I? is nonsingular. If in Assumption 1.1 one excludes the case 
o = 0 (for example, if = 0), one can no longer split the fast velocities obtained 
earlier. Indeed, in case only the principle part of system (2 .1)  is considered, the 
eigenvalues of the first normal form can take arbitrary signs. In the second and 
third normal forms, there are exactly 2 m  eigenvalues, 15 m S p ,  (where, as 
usual, m = p is related to the second form) split into m pairs of different signs; 
the remaining 2( p - m) eigenvalues may have arbitrary signs. 

Finally, we close this section by recalling that P1 always has the form 

Concerning A" we make 

ASSUMPTION 2.2 ( [ 2 ] ,  Assumption 5.2'). There exist constants K ,  S > 0,  such 
that 

(2.15) lb IISK for 0 5 x 5 6 ,  l - S 5 x S l .  

(2 .1) ,  where ( I ' ( x ) E  C? is the cut-off function, 

I I I I - 1  

We note that introducing a new variable u*(x, t )  = *(x )u(x ,  r )  into system 

1 f o r S S x S 1 - 6 ,  
0 for x 5 8 1 2 ,  x 2 1 - S / 2 ,  * ' ( X I  = ( 

we can assume, without restricting generality, that 'A"" is nonsingular in the 
interior domain as well (for details see [2] ,  Section 5 ) .  

3. One-Dimensional Problem of the First Normal Form 

We consider the system (2.1) with Po of the first normal form (2 .6) ,  i.e., for 
u = (u', u")'  we have the system of equations 

uf=-pP"u'+i'"u"+Ft, 1 
E 

(3.la) 

This result was in fact derived in the above discussion of the second normal form. Indeed, in 
our special case (2.13), one may take 

(where * stands for the appropriate rectangular matrices) and then employ the congruent similarity 
introduced in (2.12). 
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where 

P"u' =$A"uf +(A"u'),]+B ' I I  u I , J1A"-'l 5 const. 
(3.lb) 

u ),I + B' Irrru ", IIA""-*llS const. 

(fi"-given by B" +&''-is smooth and of order U(1) like all the other blocks). 
Without loss of generality we may assume that the matrices A", A"" are 

diagonal at x = 0, 1; i.e., 

I I I I  I I  P""u I' = $A""u f + (A 

Then the left and right boundary conditions (2. lb) with the corresponding 
partitioning uI = (u i, u L)', u I' = (u :I, u F)' can be written, respectively, as 

(3.3a) 

and 

(3.3b) 

expressing the dependence of the incoming characteristic variables on the out- 
going ones. Here L ,  R ,  i, j = I, II, are in general rectangular blocks (in fact, 
in our special case, Lemma 2.1 implies that they are all square blocks of order 
p), and for simplicity only, are assumed to be independent of t. Otherwise the 
additional inhomogeneous boundary terms, generated in the time differentiated 
system which we intend to estimate, can be eliminated by subtracting the 
appropriately constructed vector functions and replacing the inhomogeneous 
term F by some other smooth vector F* (for details see [2], Lemma 5.1). 

By Assumption 1.2, the operator 

is half-bounded; i.e., for all u = (u', u")' satisfying the boundary conditions (3.3), 
we have 

(3.4) 9 8  (Pu,u)=%!e -(P"uI,u')+(P I I I I  II  , u ~ ~ ~ ] c u ~ l l u ~ I l ~ + I l u ~ ~ l 1 ~ ~ ,  [,' 
with some constant (Y independent of.. Hence, by considering u = (u', u")' where 

With the help of Lemma 3.1 below. 
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u' (x ,  t )  satisfies 

(3.5) 

and u"(x, t )  = (uLr(x, t ) ,  u:(x, t))'smoothly connecting u" (0, t )  = (0, Litru,(O, t ) ) '  
with ~ " ( 1 ,  t )  = (RIIIUL(1, t ) ,  0)', it follows that 

(3.6) ~ ~ ( ( P " u ' , u ' ) s o  for u ' s a t i s f y i n g ~ ~ ~ u ' = ~ .  
That is, P" is strictly half-bounded (there is no energy growth in time). Integrating 
(3.6) by parts and taking into account (3.5) we obtain 

9 8  (P"u', u ' )=u'*(x ,  t)A"(x, t ) u r ( x ,  r ) l ~ I ~  

(3.7) 

with arbitrary uL(O)=uL(O,  r ) ,  u;( l )=u;( l ,  t ) .  Hence Assumption 1.2 implies 
(3.6), and from (3.7) one derives the standard inequalities 

(3.8a) 

(3.8b) 

Thus the boundary values are reflected in such a way that no energy enters the 
interior domain through the boundaries. 

Now if we slightly strengthen the weak inequalities (3.8) by requiring the 

I.e., requiring the boundary conditions to be dissipative rather than only 
energy conserving, we are able to prove 

LEMMA 3.1 ([2], Assumption 5 .2 ) .  For every smooth F', the two-point 
boundary value problem 
(3.10a) P"v' = F', DIru' = g 

has a unique solution, satisfying 

(3.10b) Ib I1 + lldll K(I(F'II + lgl). 

Proof: Assume A = O  is an eigenvalue of (3.10a) with corresponding 
eigensolution C$ f 0 satisfying 

(3.11) PIr4 = 0, DIIC$ = 0. 
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Multiplying (3.11) by q5 and integrating by parts we obtain 

(P"q5, ~ ) = ~ ~ $ [ R T I A , R ~ I  - ~ s I q 5 p l x = i  + ~ ~ [ L ; I A & I I  - L I q 5 a ~ r = ~ .  

By the Dissipative Condition (3.9), it follows that either ~ ~ , ( X ) J ~ = O = O  or 
q5p(x)lx=l = 0 and therefore in view of the boundary conditions (3.11), either 
q5 (x)~, =O = 0 or q5 (x)l,= = 0. Hence q5 = 0, contradicting the assumption that A = 0 
is an eigenvalue, and (3.10) follows. 

By Assumption 1.2, P is half-bounded. Hence the energy estimate (1.4) is 
satisfied, and, by Lemma 3.1, system (3.10a) is uniquely solvable. Thus, both 
Assumptions 5 .1  and 5.2 of [2] hold, implying 

THEOREM 3.1 ([2], Theorem 5.1). 

Remark. 

The system (2.1) with Po of the first 
normal form (2.6), satisfies the energy estimate (E). 

Alternatively one can prove Theorem 3.1 by replacing the Dissipa- 
tive Condition (3.9) by the somewhat milder assumption (3.10)-see [2], Section 
5.  The Dissipative Condition was introduced here, however, to indicate that 
(3.9) followed by (3.10) actually places a very weak additional limitation on our 
system, both theoretically and practically. Indeed, the boundary coefficients LII, 
RrI which, by Assumption 1.2, are weakly restricted by (3.8), are to be further 
restricted by the similar strict inequalities (3.9). 

Satisfying the energy estimate (E), it follows from Theorem 3.1 that the 
solution of (2.1) will remain bounded independently of E - ~  if its initial conditions 
are chosen so that the initial time derivatives are bounded. We refer to [2], 
Theorem 5.2, in discussing the procedure to construct such initial conditions. 
(Note that if, in particular, n = 2p, then for a'u/at'l,=,, j = 0, 1, * * , v, to be 
bounded, "u( t  = 0)ll must be, as can be expected, of order O(E "), since no slow 
scale variables are present in the system.) 

4. One-Dimensional Problem of the Second Normal Form 

We consider the system (2.1) with Po of the second normal form (2.7), i.e., 

(4.1) 

where A 12,  B13 are nonsingular matrices of order p. 
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Denote by url] the first p components of u, 

(4.2) 

Then, starting with row p + 1, the next 2p equations of system (2.1) take the form 

(4.3a) AT2uP1 + R 1 u r 1 ] = ~ + 1 { u ,  u,, F}, 

u[ll = (#), . . . , u ( p ) ) ' *  

B* f11= (4.3b) - 13u &[SIUx ++2{& uf,F}I. 
Here, J l i { . ,  ., .} are bounded linear vector functions of their arguments (a 
property which we shall denote by curly brackets) and S1 is a p x n rectangular 
matrix consisting of the first p rows of [ O ( , , - Z ~ ) ~ ~ ,  ( , , - Z ~ ) ~ ( ~ - Z ~ ~ ]  (by (2.9b), they 
exist). 

Following [2], Section 6, the way to derive the energy estimate (E) in the 
second normal form is to show first that u"]-by satisfying the overdetermined 
system (4.3)-must be of order O(E) .  We shall therefore prove 

. A"" 

LEMMA 4.1 ([2], Lemma 6.2). There exists a consrunr K > 0, such rhat for 
ur1] satisfying (4.3) we have 

(4.4) IIU i l l  II + llu"llI 5 &K (Ilu II + llu,ll+ IPII). 
Proof: We give a somewhat simpler version of the proof of Lemma 6.1 in 

121. By Assumption 2.1 the nonsingular -BT3 has a bounded inverse for 0 5 x 5 1, 
and therefore (4.3b) can be rewritten as 

(4.5) urll= E [ ( S * U ) ~  +xZ{u, U ~ , F ) ] ,  llszllsconst. 

Let 
r x  

Then (4.5) becomes 
u r i ~  - 111 (4.6b) - & V x  . 

By inserting this into (4.3a), which is first divided by the nonsingular AT2, we 
obtain 

(4.7) u~' !+R~u~' I  =xI{u, u,, F), ll~211~const. 

Now, for sufficiently small q > 0 and smooth w we have a Sobolev inequality: 

(4.8) I l w x I I ~  [77211wxx112 +7)-211w11231'2 5 d l ~ x x l l + ~ - ' l l ~ l l .  
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By choosing 71 small enough, (4.9) implies 
I11 (4.10) Ib,, IIsconst. (IIor"II+IklII) 

which, using (4.6a) to estimate o"' in terms of u and xz, gives us 
-1  [11 - r11 (4.11) E I b x  II = I b x x  II 5 const. (Ilu II + llur ll + IPII). 

Finally, by (4.8) we can estimate lIo!'/l in terms of llo!J// and Ilu[']ll, and using 
(4.10), (4.6a) we obtain 

(4.12) &- l I I~r l l I I~ I I~ ! l I I~~~n~f .  (IIuII+Ik2II+IIxlII) 5const. (IIuII+IIurII+ IF\\), 
which, together with (4.11), yields (4.4). 

With the help of Lemma 4.1 we can now prove 

THEOREM 4.1 ([2], Theorem 6.1). The system (2.1), wirh Po of the second 
normal form (2.7), satisfies the energy estimate (E). 

Proof: The proof proceeds as in Theorem 6.1 of [2]. We first want to 
estimate the first time derivative ur,  by considering the differentiated system 
(2.1) with respect to t :  

(4.13) a 
at * 

1 1 
- -- ur =-Pori & +P1zi + P + - P o u  & +PlU, - 

The last n -2p equations of (2.1), after eliminating the space derivative by 
using Assumption 2.2 about the nonsingularity of A"", give us 

(4.14) 

Hence, by Lemma 4.1, 

(4.15) 

Moreover, denote 

(4.16) , ,  , ,  
(see (4.2)). Then using the first p equations of (2.1) and the nonsingularity of 

rewrite 

II 
IIux II 5 const. ( E  -lIIu"lII + IIu II + IIur I I  + IPII). 

IP iu  II s const. ( I I u ~ I +  IIuII) 5 const. (Ilu II + IIUrII + IFII). 

u [ 2 1 = ( u ( P + l )  . . . u ( 2 P ) ) t ,  u131 = (u(2~+1)  . . . u ( 3 ~ ) ) ~  

AI2,  we have E -1 u, [21 = +{u, ur,F, E - ~ u ~ ' ] ,  E-~(u"',  u[*], u'~')'}. Thus we can 

1 .  1 
-POU =-CU +@{u, ur, F, E-'U!]}, (4.17a) 
& & 

where 
0 C 1 2  c,3 0 . - *  0 

. .  . .  . .  . .  
(4.17b) 

0 0  O O . . ' O  
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and, by Lemma 4.1, 

(4.17~) IlWu, u r ,  F, ~ - ~ u ! 1 ~ l l l ~ c o n s f .  (IluIl+llurll+llFII). 
Having obtained (4.15), (4.17) we now multiply the differentiated equation 

(4.13) by ur and integrate over time; then the half-boundedness Assumption 
1.2 implies6 

T 

1lur(x, t ) l l l ~ ~ ~  ~ ( a  +const.) I, llullldt 
(4.18a) 

where the constant K is bounded by 

(4.18b) 

Now, we observe that E -'(u, Cu) and C 1 ( u ,  ( C U ) ~ )  depend linearly on E - ~ U ' ' '  

and hence by Lemma 4.1 are bounded. Then, by (4.18) with a +const.SO 
(which, as noted in Section 1, is no restriction), we can estimate IIufl( in terms of 
))uf(x,  I = O)", 1 ~ 1 1 ,  l!F[l and IluII, where by Duhamel's principle IIu(( in turn can be 
estimated in terms of Ilu ( x ,  t = 0)" and lpll. Thus we arrive at an energy estimate 
for u f .  Using the differential equation (2.1), we can now also estimate u x ,  thus 
proving estimate (E) for v = 1. Differentiating (2.1) repeatedly with respect to 
t gives us the energy estimate (E) for higher derivatives as well. This proves the 
theorem. 

We shall now discuss how to prepare the initial data with bounded time 
derivatives and hence, by Theorem 4.1, guarantee a bounded solution for later 
times. Our system (2.1) with Po, P I  given, respectively, by (4.1), (2.14) takes 
the form (for simplicity assume the matrix coefficients to be constant) 

(4.19a) 

(4.19b) 

EU:" = A 1 Iu + A  12u f 1  + B1 1ur1] + B 1 2 ~ " '  + Blsu [31 

+ E i r r r i i u r  +E-~~~[ll u I r  +EF[ ' ] ,  

&ujz1 =AT2,!'- B ~ z u r l ~ +  E . j ~ 1 [ 2 1 u ~  + J r r r r z ;  u I I  +&Fr2', 
-1 T3u[1]+AIIr I  I I - ; I I I * u I  + i I r l I u r I  +Fir 

(4.19~) U ; ' = - E  B U X  9 

where the superscript [j] , i  = 1,2,3, denotes appropriate partitioning correspond- 
ing to (4.2), (4.16). 

For simplicity only we assume that the boundary conditions (2. lb)  are independent f, so by 
(1.2). 9pc (u, Pou)SallUll2. Otherwise, the extra inhomogeneous boundary terms D,u(r), r ) ,  r) = 0, 1. 
can be eliminated by subtracting an appropriately constructed vector function with corresponding 
update of F. 
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Let V" be unitary and diagonalize A". Then by Lemma 2.1 exactly p variables 
of VIIu I ,  u' = (u"] ,  ur2I)' ,  are inflow variables and the remaining p are outflow 
ones. In view of Lemma 4.1, u [ " ~ = E - ~ u [ ~ ]  should be of order O(1); thus 
naturally the boundary conditions should connect urlel and uL2' with url. Hence, 
the fast scale variables of the system are determined at the boundaries by 

(4.20a) ~ " ~ ~ ( 0 ,  t )  = L [ ~ , ] . ~ U  (0, t)+~[i ,1,rtu (0, t ) ,  

(4.20b) U [ l E 1 ( l ,  ?) = R[l,].2ur21(1, t )+R[ l€ ] , I Iu  (1, t ) .  

(4.2 Oc) 

121 I1 

rr 

For the slow scale variables, urr, we have (see (3.3)) 

uF(0, r )  = ~ 1 1 . 2 ~ [ ~ ~ ( 0 ,  r )  +LrrrrUL'(O, r ) ,  
(4.20d) uLI(1, t ) = ~ r r , 2 ~ [ ~ ] ( 1 ,  t)+Rrr,ruF(I, t ) .  

We want to assure that the first time derivative, u,,  is bounded. By Lemma 
4.1, therefore, 

(4.21a) 

with u;'" also of order O(1). Having obtained (4.21a), the boundedness of usz1, 
u:' follows from (4.19b, c) .  For uj'] to be bounded we also need 

(4.2 1 b) A 1 2 ~ ~ ~ + B 1 2 ~ [ ~ ~ + B 1 3 ~ [ ~ ~ =  O ( E ) ,  

by (4.19a). To satisfy (4.21), determine uIr and the right-hand side of (4.21b). 
Next, by the boundary conditions (4.20c, d) at most p components of ur2' are 
determined at either x = 0 or x = 1,' and the remaining components, if any, are 
chosen at one point. Thus ur2 ]  is uniquely determined by (4.21b). Finally, we 
smoothly define u r I E 1  between its boundary values x = 0 and x = 1, given, respec- 
tively, by (4.20a) and (4.20b).' 

Higher derivatives can be handled similarly repeatin differentiation of (4.19) 
with respect to ?. In particular, let E +O. Then ( u " ~ ] ,  j2', u")' converge to the 
solution of the reduced system 

(4.22a) A12wF1 + B l 2 ~ [ ~ ] + B 1 3 ~ [ ~ ] =  0, 

(4.22 b) 

(4.22,.) 

and we can derive asymptotic expansions, for details see [2], Section 6. 

O(1) u [ l ' l =  - & - l u [ l 1  = 

w j 2 ~  = A T , ~ ~ I  - B ~ ~ ~ [ 1 1 + J " r 2 1 ~ r  + J I I I [ ~ I  w I r  +Fr2', 

11 Irw II + F" w ,  II = -B T~ c 11 + A r I r Iw ; - J 1 1 ~ 2 1 *  P I  + 
t 

' For simplicity assume u'' has at most (and therefore pxactly) p components, u r r  = d'', or 
otherwise handle u r l  -- (ur3], u [ ~ ] ) '  separately. Also assume B'""'= 0 so that u r r  and u [ l l  are not 
coupled through (4 .19~) .  The case Br'r"lZO can be handled by expanding in terms of the solution 
of the reduced system (4.22) given below. 
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5. One-Dimensional Problem of the Third Normal Form 

We consider the system (2.1) with Po of the third normal from (2.8), i.e., 

Ail A12.1 Aiz.2 A11 4412.1  A12.2 0 

0 0 0  0 0 
(5.la) 

BII  B12.1 8 1 2 . 2  Bis .O 

0 (Bzd 

0 
0 

0 0 0 

with A 12,2, B13 nonsingular blocks of order m, 0 < m < p, and 

(5.lb) A22.l rank [ iw( :) + 8 2 2 1  = 2 ( p  - m). 

By (5.lb) it follows (applying the same argument of letting w +oo as in 
Theorem 2.1) that the lower right block in the corresponding partitioning of BZ2 
must vanish. Thus 

(5 .1~)  

Furthermore, the side condition (5.lb) suggests applying Theorem 2.1 once more 
.in order to obtain the normal form of the main subsymbol 

and hence simplifying the normal form of the overall operator Po given in (5.1). 
Indeed, in our next lemma we show that by doing this repeatedly, we can take 
B22.2 in ( 5 . 1 ~ )  to be zero as well, namely, the main subsymbol 

is then of the first normal form. 

LEMMA 5.1. Consider the operator Po of the third normal form given by (5.1). 
Then there exists an orthogonal matrix 

(5.2) u = ( Y  I") 
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such that 

(5.3a) U*PoUu = ~ [ A u ,  + (Au ),I + Bu, 

where A, B are given, respectively, by 

I [A111 [AlZJl [ A 1 2 2 1  o\ 

(5.3b) 

Here, the m-dimensional A12.2 (A12 .2  is nonsingular) has a (block) upper anti- 
diagonal form and B12.2 has a (block) upper antidiagonal Hessenberg form given, 
respectively, by 

9 are mi-dimensional blocks, A'"", B""-" and the m- where A".", B(j.i) B(j.j-1) 
dimensional block B13 are nonsingular, with 

(5.3d) 

and 

(5.3e) rank (ioA22.1 + BzZs1) = 2(p - m). 
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Proof: 
the subsymbol 

By Theorem 2.1, there exists an orthogonal V"' which transforms 

A 2 2 1  0 
iu( o '  o) +BZZ 

into one of three possible normal forms. 
In the case of the first normal form (see (2.6)) (5.3) is obtained with q = 1 

identifying Aij,&, Bii.t and m =  m l  in (5.3) with Aii,&, Bij,k and m in (5.1), 
respectively. 

In the case of the second normal form (see (2.7)), which by (2.9b) may exist 
only if 2m L p ,  (5 .3)  is obtained with q = 2 and m l  = m I m2 = p - m (hence here 
m = m l + m z = p  and A22,1=B22,1=0). 

In the case of the third normal form (see (2.8)), with some typical order of 
the corner blocks say m, ,  where, by (2.9a), 0 < m ,  € min ( p  - m, m ) ,  a structure 
like (5.3) is obtained with q = 2 and m = m > m2 = m , ,  m = m1 + m2 C p ,  consist- 
ing of a new subsymbol of rank 2( p - m) for which the normal characterization 
step described above can be applied once more. 

Thus, after at most p such steps the result follows with 

Remarks. (i) According to the iterative constructive proof of Lemma 5.1, 
it is clear that the final form (5.3) is obtained when the process is terminated in 
one of two ways: either with the subsymbol of the the first normal form where 
the weak inequalities in (5.3d) are both strict, or, with the subsymbol of the 
second normal form further reduced to be included in the corner blocks so that 
both equalities in (5.3d) hold. The subsymbol then vanishes. 

(ii) As remarked in Section 2, the first and second normal forms may be 
considered as limit cases of the third normal form with m = O  and m = p ,  
respectively. Thus, the form (5.3) with the side condition (5.3d) replaced by the 
modified condition 

(5.4) 

to include also these two limit cases, gives us the most general form of the symbol 
B,(iu 1. 

Having the explicir representation of the third normal form as given by (5.3). 
we now may proceed to obtain the desired energy estimate (E). We do so by 
first using the special structure of the m-dimensional corner blocks B12.2 
in ( 5 . 3 ~ )  to show that the first m components of the solution 

( 5 . 5 )  

must be of order O ( E )  (compare-in the second normal form-Lemma 4.1). 

" [ 1 1 = ( p ,  . . . , p')' 
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LEMMA 5.2. There exists a constant K > 0,  such that 

Proof: The row equations of (2.1), associated with the (non-zero) lower-left 
corner blocks of A and B in (5.3), are given, respectively, by 

(5.7a) A T ~ , ~ U [ , ' ~ + R ~ U [ ' ~ =  E*{u, ur, F), R I  z A T 2 . 2 x - % B ~ , 2 ,  

(5.7b) BT~U"]=E[SIU~ + W ~ { U ,  u ~ , F } ] ,  u " I = ( u ( ' )  9 ,  * * (m, ))I* 

We introduce the compatible partitioning 

(5.8a) 

where 

(5.8b) 

To simplify notations let us also denote B(1'0)GB13. Equations (5.7b), (5.7a) 
then take the corresponding partitioned form 

(5.9a) B('*O)* u - E [Slux + *I{u, Ur, F)1, j =  1, 

u[ll, ( u r l l ,  * . . , u r q l ) ' ,  

U [ i l = ( U ( m ,  , + I )  , . . . , u""f))', j = 1.2, - * * ,  q, mo= 

Trying to follow the proof of Lemma 4.1 we note that only u"]-the first 
component of u"'-admits the overdetermined equation (5.9a) in order to give 
us an &-order estimate. However, making use of the strong coupling between 
successive components of u"'-as expressed by the nonsingularity of B"*'-"*, 

appearing in (5.9b)-we are able to show that each one of these com- 
ponents, u"', can be estimated in terms of the former ones; Hence the &-order 
estimate is also valid for the remaining uri ' ,  j = 2,3, - - * , q. The detailed proof 
along these lines is given below. 

Starting with (5.9a). the terms u r k l ,  k = 1, - - , j -  1, appearing in the right- 
hand side of (5.9b) can be replaced by their explicit representation obtained 
from (5.9b) with k = 2,3, - - * , j ,  respectively. Thus u[j'  can be expressed as a 
bounded' linear combination of O ( E )  terms and U ~ X " ' ] ' , - _ _ ' ~ ,  namely 

A' i d *  

u [ i i =  r i i  Lkl k i 1 (5.10) - u  { E U x ,  & * k ] : q { ,  u x  ] k I [  }. 

Let us denote 

(5.11) u ~ l . ~ l ~ ~ u ~ l l ,  , . . , u [ i l ) ' ,  j =  1,2,  * , q ,  

where in particular (see (5.8a)), u['*~'  = ur1]. Equations (5.7a)-after division by 

* Using the nonsingulairty of B".'"'*, 
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the nonsingular AT2,2-and (5.10) can be rewritten, respectively, in the concise 
form 

( 5.1 2a) u!"' +R,u['"~= EYI,~{U,  u,, F}, 
(5.12b) u[~.~~=E[S~U~+Y~.~{U,U,,F}]+T~U~'~-~~, j = 1 ,  2, * - * , q .  

(Weunderstandthat,forthecasej = 1, ~"'~~=O,and(5.12b)isreduced to(5.9a).) 
Equations (5.12a). and (5.12b) withj = q ,  give us for urlqql an overdetermined 

system similar to (4.3)-the one discussed in Lemma 4.1. Repeating the proof 
of Lemma 4.1 in our modified case (5.12) where there are additional 0 ( 1 )  spatial 
derivatives in the right-hand side of (5.12b) (or alternatively use Lemma 4.1 
directly, rewriting first (5.12b) with the help of S*, =S, +&-lTq), we obtain 

( ( u ~ ' ~ ~ I ( + I I ~ [ ~ ' ~ ~ I I ~  ~ ~ ~ I I ~ I I + I I ~ ~ I I + I I ~ I I + ~ q - i I I ~  r1.q- 1111, 

Thus u[pl, ucq1 are bounded in terms of the first q - 1  components uLkl, 
k = 1,2,  * * , q - 1, which enable us to reduce (5.12a) to 

(5.13a) ux 

Using (5.12b) for i = q - 1, 

E W l . q - l { 4  U I ,  F ) .  

&[Sq-lUx + * 2 . q - 1 { ~ ,  ~ t ,  F)]+Tq-lux 

[I .q-11  + Rq-lU['d?-'l = 

(1.q-21 (5.13b) u[1 .4 -11=  

we have a reduced overdetermined system satisfied by u[ ' .~ - ' ]  for which Lemma 
4.1 can be applied once more. 

After q such steps, where the estimate follows in the j-th step, 

II s~o(I luI I  +IIutII + IFII) +Kj-lIIu[l*i-llII (5.14) ~ ~ u ~ . i l ~ ~  + llu[l.il 

is used to obtain a reduced system for u " * ~ - ~ ' ;  we finally arrive at 
11.11 +Rlu['*'l = Eq { (5.15a) ux 1.1 u, U f , F l ,  

E [ S I U x  + Y 2 , 1 { u ,  4, FH. u r l . l l  = (5.15 b) 

By Lemma 4.1, urll=url.ll satisfies the estimate (4.4), and in view of (5.14) the 
same holds for u [ ~ * ~ ' ,  j = 2,3, - * , q. In particular, for i = q, u[l'ql=u[ll satisfies 
the desired estimate (5.6) which completes the proof. 

We continue by considering the 2(p -m)-dimensional subsymbol i w A 2 2 , 1 +  

B22,1 associated with 

(5.16) 

(We exclude the trivial case whre m = p - s e e  Remark (i) above.) Let 
, U(2p-m))r, ,,[31= l 2 ~ - m + l )  . . , , u ( 2 ~ ) ) r  (5.17) u[21= (u('"+'), . - . - (U 9 

which together with ( 5 . 5 )  give us the partitioning which corresponds to that of 
the third normal form of A in (5.3b). 



HYPERBOLIC SYSTEMS 86 1 

By Assumption 1.2 the operator P is half-bounded, namely, for all u =  
(#I, ur2], ur3], u")' satisfying the boundary conditions (2.lb) we have 

1 1 [l]  x = l  3 8 (Pu, U) I;+ - u " ~ A ~ ~ u  Ix=o 
E & 

1 + - [ ~ ~ ~ ~ * A 1 2 , 1 ~ [ * ~  +u'~'*A~~,~u'~']I:Z~ + .% 8 (P""u", u") 
E 

(5.18) 

5 a [Ilu"lll2 + l l ~ ~ ~ ~ 1 1 ~  + lb[31112 + I ~ U "  112], 
with some E -independent constant a. By Lemma 5.2 only the first of the four-term 
summation in (5.18) is of order O(E-') .  Hence for E sufficiently small it follows 
that 

(5.19a) 3 8  P 2 2 . l U  , u[*]) E U [ ~ ~ * A ~ ~ , ~ U ~ ~ ~ ~ : Z ; ~  0, 

for ur2] with appropriate partitioning ur2' = (uL2), uf') satisfying 
- w  

(5.19b) 

Without loss of generality, assuming that at the boundaries A22.1 takes the 
diagonal form 

(5.20) 

(5.19) is equivalent to (see (3.8)) 

A22.1i > 0, i = a, P,  A22.i1x=o.i = (A22*1a -A22.1@ ) '  I ~ = O . I  

(5.2 1 a) L~.2A22.1p(0 ,  t ) k 2  - ~ Z 2 . 1 a ( 0 ,  t )  5 0. 

(5.2 1 b) R2*.2A22.1a(lr t)R2.2-A22,1,3(1, t )  5 0 .  

Now, we slightly strengthen (5.21), requiring (compare (3.9) in the first normal 
form): 

Assuming the boundary conditions (5.19b) to be maximal dissipative, (5.22), 
Lemma 3.1 implies 

LEMMA 5.3. For every smooth Fr2], the two-point boundary value problem 

(5.23 a) P22,1vrz1 = Frzl , D22.1vr21 = g 
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has a unique solution, satifying 

(5.23b) llvr2]11 + 11vk2’11 S K(IIF[2111 + kl). 

According to Lemma 5.1, the third normal form (5.3) may be considered as 
a composition of two different parts. The first is the subsymbol (5.3e) of the first 
normal form for which Lemma 5.3 holds; the energy estimate for this form was 
analyzed in Section 3. The second consists of the corner blocks (5.3~-d) having 
a structure like the second normal form for which Lemma 5.2 holds; the energy 
estimate for this form was analyzed in Section 4. By employing the techniques 
used in Sections 3 and 4, we are finally able to complete the proof for the case 
of the composed third normal form (5.3). 

THEOREM 5.1. The system (2.1) with Po of the third normal form (5.31, 
satisfies the energy estimate (E). 

Proof: Differentiating the system (2.1) with respect to t we obtain 

1 1 
6, = -Po6 +P*U +F +-Pou +PlU, 

& & 
(5.24) a 

at 
- -- - .  

We estimate the term (1/&)Pou in two steps. First we consider ( ~ / E ) P ~ ~ . ~ u ,  where 
we proceed as in Theorem 3.1.9 By Lemma 5.3 the boundary value problem 
(5.25 a) P22,1vg1= : P 2 2 , 1 ~  r21 , D 2 2 , 1 ~ [ , 2 ] =  0, 

has a unique bounded solution with 

(5.25 b) lIv!,?II + IlvFjl ~ ~ ( l l u L ~ ’ l l +  ll~‘~’11) 5 const.  lull + I ~ U ~ I I ) .  
Replacing uL2] by d2’ - v g l  introduces an additional bounded inhomogeneous 
vector g,, at the boundaries, which is eliminated by subtracting the solution of 

lg**I 5 const. (Ilull+ llu,ll). 121 - 0 (5.26a) p22.1v** - 9 D22.1v[,22 = g**, 

I3y Lemma 5.3, (5.26a) is indeed uniquely solvable with 

(5.26b) 

Now, in terms of the new variable w = (w”’, wr2], wr3’, wr’)’, 

(5.27) W‘ = ui, j = [I], pi, IZ, 4’’ = d2] - (v‘,’+ v[*i), 

the differentiated system (5.24) takes the form 

(5.28a) 

llv[,22ll+ l l v 2 x l l ~  Klg**lzz const. OlUll+ IlUlII). 

1 1 w, = -P,W+P,W+P* + -[Po - P,,,,]w + Pl w 
& & 

See [2], Theorem 5.1 
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with 
(5.28 b) 
complemented by the homogeneous boundary conditions (2. lb). 

lF*llZs const. (Ilull+ IlUfIl+ lPll+ IPII), 

Next we consider (1/&)[P0 - P22,1]w, where we proceed as in Theorem 4.1. 
We can now write 

1 1 

E & 
- [ P ~ - P ~ ~ , ~ ] w = - C W + @ { W ,  wI, F, E - ~ w ? ] } ,  (5.29a) 

where 
0 c12 c13 c14 0 * "  

. .  . .  . .  . .  . .  
(5.29b) 

0 0 0 0 0 . . .  
By Lemma 5.2, (5.25b) and (5.26b), 

-1 r11 (5.294 

Similarly, for the term Plw we have 

(5.30) IPplwII 5 const. (IluIl+ IbI II + IPll+ IPII). 
Integrating (5.24) over time, noting that the terms E- ' (w ,  Cw), E - ' ( w ,  (Cw),) 

are bounded and taking into account (5.25b), (5.26b) and (5 .29~)  we finally 
conclude that the energy estimate (E) holds for v = 1. Higher derivatives can be 
handled in like manner. 

Let us now discuss how bounded initial conditions should be determined so 
that by Theorem 5.1 the solution will remain bounded for t >O.  For simplicity 
assums the matrix coefficients to be constant, neglect the slow scale low-order 
term B = 0 and let urr consist of only m scalar components. The system (2.1) 
with Po given in (5.3) then takes the form 

EU;'] = Allu?'+ Al2,luLZ1+ A12,2ui3]+ Bllu"' 
(5.31a) + B12,1~[21+ B12.2ur3'+ B13U" + EF['], 

IIWw, w f ,  F, E w, 15 const. (Ilull+ Ilulll + IPIl + IIPII). 

(5.31b) E U ~ ~ ~ = A T ~ , ~ U ~ ~ - B ~ ~ , ~ U " ~ + P ~ ~ , ~ U [ ~ ~ + E F [ ~ ~ ,  

(5 .31~)  E U ~ ~ ' =  AT~,~UV'-BT~.~U[~I+  &Fr3], 
-1  * [ 1 1 + ~ r r r r  rr (5.31d) u~'=-E B13u u, +Frr. 

By Lemma 5.2, u ~ ~ ~ ~ = E - ~ u [ ~ ~  is of order O(1); thus the complementing 
boundary conditions (2. lb )  take the corresponding partitioned form (see (5.19b)) 

(5.32a) x =o, 

x = l ,  
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and with corresponding partitioning of A"" at the boundaries (see (3.2)), 

(5.32~) 

(5.32d) 

U;(O, t )  = L ~ ~ , ~ U [ ~ I ( O ,  t )  + ~ 1 r . 3 ~ " ' ( 0 ,  t )  +L~,~,u:'(o, t ) ,  

U;'(I, t ) = R ~ ~ . ~ I I [ ~ I (  1, t ) + ~ 1 1 . 3 ~ [ ~ ' (  1, t ) + RrIrI  US( 1, 1. 

u r l E l  - = -Iu[ 11 = 

To assure that u,ltEO is bounded, we must have, by Lemma 5.2, 

O(1) (5.33a) 

with uVE1 also of order O(1). Using (5.32a), the boundedness of ui3], u:' follows 
from (5.31c-d). Also it follows from (5.31b) that one must have 

(5.33b) P22,1d2]= a€), 
in order for u[r2] to be bounded and, similarly, for ujll to be bounded, (5.31a) 
implies 

(5.33~) 

To satisfy (5.33) determine u", the right-hand side of (5.33b), (5.33c), and 
specify ur3' at the boundaries arbitrarily. Then by (5.32~41,  urZ1 is also determined 
at the boundaries and, according to Lemma 5.2, u['] is uniquely determined by 
(5.33b) everywhere. Then ur3] is found as the solution for (5.33c), and finally 
U I I E l  is obtained by smoothly connecting its given boundary values in (5.32a), 
(5.32b). Higher derivatives can be handled similarly and, in particular, letting 
E + 0, we find that (u"'], d2', ur3', u")' converges to the solution of the reduced 
system 

(5.34a) A 1 2 . ~ ~ ~ 1 + B ~ 2 , 2 ~ [ 3 1 + A ~ ~ . ~ ~ ~ 1 + B ~ 2 . ~ ~ [ 2 1 +  B13w" = 0, 

A12,2~[~'+ Bl2.luk3I + A I ~ . ~ u [ ~ ] +  B12.1dZ1+ B 1 3 ~  11 = O(E) .  

(5.34b) P22.1d2' = 0, 

(5.34c) wj3] = A ~ 2 . 2 ~ ~ '  - B I 2 . 2 ~ " '  + FL3', 
(5.34d) wy= - B ~ ~ ~ J ' J +  A ~ ~ I ~ ~ ~ ~ + F " .  

Appendix 

THEOREM. Assume the symbol pO(io) = ict=l wiAi +i has a fixed rank 
independent of o, x, t (Assumption 1.1). Then PO(io) has an even rank. 

Proof: For simplicity let us consider the one-dimensional case (s = 1) 
assuming 
(A.1) r a n k [ i d + i ] = 2 p + l ,  integer p 2 0. 

Clearly, (A.l) cannot hold for p = 0. The general case then follows by induction. 
Without restricting generality, let A be partitioned into 
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where A" is a (2p + 1)-dimensional nonsinplar block. As in the proof of Theorem 
2.1 it follows by considering o +a) that B has the corresponding partitioning 

(A.3a) 

with 

(A.3b) rank (6'") = m y  O S 2 m 5 2 p + l .  

The case m = 0 is impossible since the (2p + 1)-dimensional antisymmetric block 
8" is singular. Hence rank Po(io = 0) = rank (8") <2p + 1 contradicting (A.1). 
Thus 

(A.3c) rank (6'") = m, O<m<p.  

Now, let 

(A.4) 

be the singular value decomposition of 8"', and BI3 an rn -dimensional nonsin- 
gular block. Also form the corresponding partitioning 

Then upon employing the orthogonal transformation 

we find that the kernel of Po(iw) consists of x = (x'l], x [ ~ ] ,  xL3', xL4')' satisfying 

( i d  + E l  l)P1+ ( i d  12 + 6 1 2 ) P 1 +  f i 1 3 ~ [ 3 1  = 0, 

( ioi72 - 6 T 2 ) 2 ' ' +  (iwA22+622)ir2' = 0, 

= 0. g* -[I1 
- 13x 

The system has the assumed rank 2p + 1 only if 

rank ( i I J )+rank  ( ioA22+g22)+rank (Z73) = 2p + 1, 

i.e., the rank ( i w A z 2 + i z 2 )  = 2(p -m)  + 1, which by (A.3c) contradicts the induc- 
tion assumption. 
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Added in proofs: To shed a different (and simpler) light on Lemma 2.1 and the 
theorem in the Appendix, we note that the continuous dependence of the signature 
of an Hermitian matrix on its rank implies under Assumption 1.1, signature 
[i$o(iw)] = signature [ipo(iw)l,=o = i f i ]  = 0 by the antisymmetry of ; hence the 
rank of B0(iw) is necessarily even, 2p, consistingof p pairsof eigenvaluesof opposite 
signs. 
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